
Searching for Constellations: A Brute Force Approach
to Geometric Pattern Matching in 2D Star Maps

Muhammad Fithra Rizki - 13523049
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail: fithra7474@gmail.com , 13523049@std.stei.itb.ac.id

Abstract—The problem of recognizing constellation patterns
in the sky is a fundamental task in astronomical data processing.
In this study, we propose a brute force approach to solve
geometric pattern matching problems for detecting constellations
in two-dimensional star maps. The algorithm utilizes normalized
pairwise distance descriptors to achieve scale-invariant shape
comparison, combined with DBSCAN clustering to reduce the
search space, and random sampling to control computational
complexity. Experiments on synthetic star map datasets with
varying parameters demonstrate that the method successfully
identifies injected constellations while managing false positives to
a reasonable extent. Although brute force methods generally
incur high computational costs, the hybrid combination of
clustering and sampling allows the system to operate effectively
for small to medium datasets. This approach offers a simple yet
practical solution for constellation detection when large training
datasets or complex models are not available.

Keywords—constellation, brute force, geometric pattern
matching, star map

I. INTRODUCTION

A constellation is a group of stars that appear to be related
and form a pattern in the sky. These stars may not be physically
related, they just appear close to each other from Earth.
Constellations are also often associated with mythological
figures, animals, or objects that resemble constellation patterns.

Figure 1. An example of constellations in a group of stars
(Source: https://www.orami.co.id/magazine/rasi-bintang-

zodiak)

In astronomy, recognizing constellation patterns is a very
interesting problem and has been studied for a long time.
Although the distribution of these stars appears random,
humans have been able to recognize certain formations that
have distinctive shapes or patterns for thousands of years,
which are later known as constellations. The problem in
automatically recognizing constellations is how we can
recognize certain geometric patterns among thousands to
billions of stars that are scattered irregularly in the form of a
two-dimensional sky.

Many algorithms have been developed to offer solutions to
this problem. These algorithms are geometric pattern matching
algorithms, such as feature-based methods, probabilistic
algorithms, geometric transformations, and even algorithms
based on machine learning. However, the method mentioned is
not a practical method, but it takes time to learn the data, data
distribution assumptions, and also very complex tuning
parameters.

So, this problem can be solved with a very simple
algorithm, namely brute force. Unlike the algorithms
mentioned, the brute force algorithm offers a very simple
approach and has an exhaustive search nature so that no
training is needed. Although it has a very long computing time,
this approach is one of the options that can be applied to
relatively small to medium data scales, especially when there is
no data to train or the data is very noisy.

In addition to these problems, constellation patterns are not
simply formed from star arrangements that have uniform
brightness or consistent distances between stars. Noisy factors
such as other stars that are not part of the constellation and also
scale distortions caused by viewing distance or observation
perspective add complexity to the pattern matching process.
Therefore, an automatic constellation search system not only
needs to match absolute positions, but must also know and
match the shape relatively by considering the relationship
between the distances between stars proportionally without
relying too much on exact coordinates.

In this study, the authors develop a brute-force constellation
search algorithm to detect constellation patterns in a two-
dimensional star map. The approach used involves matching
the normalized pairwise distances to accommodate scale
variations. In addition, a DBSCAN-based clustering technique

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

mailto:author@gmail.com
mailto:author@std.stei.itb.ac.id
https://www.orami.co.id/magazine/rasi-bintang-zodiak
https://www.orami.co.id/magazine/rasi-bintang-zodiak

is used to narrow the search space to remain efficient, while
reducing the number of candidate combinations that must be
fully evaluated.

II. BASIC THEORY

A. Brute Force

[2,3] Brute force is an algorithm that has a straight or flat
approach to solving a problem. Brute force is chosen because it
can solve problems very simply, directly, clearly, and easily
understood. This algorithm can usually be written based on
statements in the problem and the definitions/concepts
involved.

Although known as a simple algorithm, this algorithm has
several advantages and disadvantages. The advantage of this
algorithm is that the algorithm can be applied to most existing
problems, it can even be said that almost all problems can be
solved with the brute force algorithm. Then, this brute force
algorithm is simple and easy to understand by many people
because it does not require special logic in its implementation.
Then, this algorithm produces a feasible algorithm for several
important problems that often arise, such as searching, sorting,
string matching, and matrix multiplication. Then this algorithm
produces a standard algorithm for computational tasks such as
adding/multiplying n numbers, determining the minimum and
maximum values ​​of an array.

Not only the advantages, this algorithm has several
weaknesses that come from the side effects of its logic. This
algorithm rarely produces an effective solution, because this
algorithm is straightforward which ignores the effectiveness of
the solution created. Then, this algorithm usually has a slow
computation time for large inputs, so it is usually only suitable
for small to medium inputs. Finally, this algorithm is not a
creative algorithm like other algorithms.

In brute force, there is another search technique commonly
used for combinatorics problems, namely exhaustive search.
Exhaustive search is a problem among combinatorics objects
such as permutations, combinations, or subsets of a set. The
steps are: 1) Enumerate every possible solution systematically,
2) Evaluate each solution one by one and save the best solution
so far, 3) When the search is over, the last best solution is the
final solution.

Figure 2. Example of a brute force problem, Finding the Pair
of Points with the Closest Distance (Source: https://

informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/02-
Algoritma-Brute-Force-(2025)-Bag1.pdf)

In the context of constellation search, brute force means
exploring all possible combinations of star clusters that form a

formation or pattern. For example, if there is a constellation
pattern consisting of 5 points/stars, then all combinations of 5
stars from the star clusters in the existing data will be evaluated
for their suitability with the constellation pattern.

B. Constellation System

[1,4] Constellations are groups of stars in the night sky that
are imaginatively connected to each other by humans who are
observers from Earth. Constellations form certain patterns or
images. Since ancient times, humans have observed these
patterns for various purposes, such as navigation, dating, and
even aspects of mythology.

In modern times, the International Astronomical Union
(IAU) has approved 88 official constellations that can be used
on an international scale. Each constellation generally consists
of several bright stars that are relatively easy to recognize in
the sky. However, the position of these stars is a 2-dimensional
projection of the sky. In fact, in reality these stars may be at
very varied distances in 3-dimensional space.

In the matching process, there are several important things
to consider, namely

1. The number of main stars is relatively small

2. No need to pay attention to spatial depth or in 2-
dimensional projections

3. Patterns can vary in scale and orientation

4. Not sensitive to translation

C. Geometric Pattern Matching

Geometric Pattern Matching is a method of matching
patterns or shapes obtained from geometric information from
the elements that form a pattern or shape, such as point
positions, distances between points, and angles between
connecting lines. This is a different method from digital image
matching that works on a pixel grid, this geometric pattern
matching works on a set of points spread across 2-dimensional
space.

In the context of constellation search, this geometric pattern
must consider several geometric transformations, namely
translation, rotation, and scale. Translation considers star
patterns that can move positions on the sky map, rotation
considers the orientation of different constellations, and scale
considers the relative sizes of stars that can vary due to image
scale.

To overcome these differences, an approach is used in the
form of a normalized distance matrix that forms a list of
distances between pairs of points that have been normalized to
the average size of the distance in the pattern. This method can
form two star formations with the same shape but have
different sizes so that they can be recognized as geometrically
identical patterns.

D. Distance Metric, Normalization, and Clustering

Distance Metric, Normalization, and Clustering are
techniques used to optimize the brute force process.

1. Distance Metric (Euclidean Distance)

Euclidean distance is the most common method for
measuring the distance between 2 points in a 2-dimensional 	
plane, here is how to calculate the Euclidean distance:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/02-Algoritma-Brute-Force-(2025)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/02-Algoritma-Brute-Force-(2025)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/02-Algoritma-Brute-Force-(2025)-Bag1.pdf

2. Normalization

Scale becomes something that can complicate the search
process, so it is necessary to normalize the distance between
stars to the average distance of all point views in the pattern.
This makes identical patterns but different scales will be
considered a match. Here is the normalization calculation
formula:

3. Clustering (DBSCAN)

Before entering the brute force process, it is necessary to
apply a clustering system in the form of Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) which can
group stars that are close to each other. This clustering helps
reduce the search space by evaluating a subset of stars that can
potentially form a pattern. DBSCAN can also automatically
ignore noisy stars that are spread far from the main group.
DBSCAN has several advantages in implementing
constellation searches, including not requiring an initial
number of clusters, being able to handle noise well, and being
suitable for spatial data such as star maps.

III. IMPLEMENTATION

In its implementation, the constellation search algorithm is
carried out in stages according to the flow in brute force
geometric pattern matching. In general, the stages consist of

1. Static data generation, sky data is created with a
generator and injected

2. Initial Clustering, to reduce the complexity of searching
with sky data containing thousands of points grouped first

3. Candidate Combination Sampling, a number of random
point combinations are taken from the cluster

4. Geometric Distance Normalization, each candidate
combination is calculated for its distance and normalized to
the internal scale

5. Pattern Matching with RMS Error, calculating the RMS
error between candidates and constellation templates

6. Visualization of detection results

The tools used in this algorithm are made with the Python 3
programming language with the help of several libraries,
namely NumPy for mathematical, vector, and matrix
operations. Then Matplotlib for data visualization, Scikit-Learn
(sklearn) for the DBSCAN clustering algorithm, and itertools
for candidate combinatorial sampling operations.

A. Datasets and Synthetic Data

For the experiment, a synthetic dataset in the form of a 2-
dimensional sky map was used. This dataset was generated by
placing a number of random points in the coordinate range
[0,200] on the X and Y axes, which represent the positions of
random stars. In addition to random stars, the system also
injects several constellations into the data.

Insertion is done by selecting several constellations from 12
predefined constellation templates, then performing translation
(position transfer) and random scaling so that the position of
the constellation is not fixed. Thus, the inserted constellation
pattern can be in various locations and scales, resembling real
conditions on the sky map.

The creation of a dataset in the form of a sky is done in a
program called generate_sky.py.

Figure 3. Example of the shape of the sky, the yellow color is
the constellation of the injection

B. Constellation Pattern Representation

There are 12 star constellation patterns used in this
implementation, the 12 patterns follow the names of the
constellations of general stars that are matched in the month in
one year. Each star constellation is represented as a set of 2-
dimensional coordinates relative to the origin (0.0). This
coordinate template is defined as the basis of the pattern that
will be matched against sky data. The constellations used and
the coordinates are as follows:

Figure 4. 12 Star Constellations and Coordinates

C. Initial Clustering

The very large number of candidate combinations must be
preceded by a clustering process using the DBSCAN algorithm
so that the sky area can be divided into groups of adjacent stars
so that the search space for candidate combinations is reduced.

With the EPS_CLUSTER parameter regulates the grouping
radius and MIN_SAMPLES is the minimum number of points
in one cluster, the clustering function used is:

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 5. Clustering Function Implementation

D. Candidate Combination Sampling

After clustering, in each cluster the system will generate a
number of candidate point combination samples equal to the
number of stars in the target constellation pattern. Random
sampling is done to gain efficiency in computing because the
total number of combinations can be very large. The
combination sampling function is:

Figure 6. Candidate Combination Sampling Function
Implementation

E. Geometric Distance Normalization

As mentioned earlier, normalization is used to create a scale
and position invariant match. Normalization will calculate the
distance matrix between points and then normalize it relative to
the average distance between points. The result will be used for
comparison with the original form. Here is the normalization
calculation function:

Figure 7. Geometric Distance Normalization Function
Implementation

F. Pattern Matching with RMS Error and Pre-Filtering with
Anchor

Before calculating the RMS error, an initial filtering
process will be carried out using the distance between the first
two points (anchor points) to speed up the process and reduce
the number of irrelevant candidate calculations.

Then, the candidates that have been normalized and pre-
filtered will be compared with the constellation template and
calculate the difference between the normalized distance
vectors, the error size is calculated using the Root Mean Square
(RMS) error:

Figure 8. RMS Error Calculation Implementation

G. Result Visualization

In order for the results to be easy to read, the system is used
to display the visualization of the results in the following
format:

• All random stars: small white dots

• Constellation detection results: various colors with
constellation name labels

• Only the best match is displayed to make it easier to read
the results and display

Figure 9. Example of Result Visualization

IV. TESTING AND ANALYSIS

A. Testing

Testing will be done with various formats and test cases of
variations of the numbers that can be changed, such as the
number of stars, star injections, and others. The normal
situation are generating sky with 150 stars and 4 constellations
injected, BASE_TOLERANCE is 0.05, and EPS_CLUSTER is
15.

1. Normal Testing with No Change

Figure 10. Sky of Test Case 1

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

Figure 11. Result of Test Case 1
2. Generate 100 Stars

Figure 12. Sky of Test Case 2

Figure 13. Result of Test Case 2

3. Generate with no Injection

Figure 14. Sky of Test Case 3

Figure 15. Result of Test Case 3
4. Change BASE_TOLERANCE to 0.15 and

EPS_CLUSTER to 30

Figure 16. Sky of Test Case 4

Figure 17. Result of Test Case 4

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

B. Analysis

In this section, the results are analyzed based on several test
scenarios that have been run. Each test is designed to evaluate
the performance of the brute force geometric pattern matching
algorithm under various conditions that represent real-world
problems.

Table 1. Test Case Result

The first test case was conducted using the default settings,
namely generating sky with 150 stars with injection of 4
constellations from the template, tolerance limit of 0.05 with
cluster 15. The results of this test are that most of the injected
constellations were successfully detected by the algorithm with
a small number of false positives appearing but still within
acceptable limits with an execution time of 80 seconds. With a
small tolerance, the algorithm works with high precision but is
sensitive to noise or minor variations in star positions. The
clustering process with a radius of 15 is quite effective in
limiting the candidate search space so that the number of
combinations that must be evaluated can be reduced.

The second test case was conducted by reducing the total
number of stars created to 100, while the remaining parameters
were not changed. The result was that the injected
constellations could still be found with high accuracy, false
positives were also reduced because the number of stars was
reduced, and the execution time was also reduced because the
number of stars to be checked was reduced. Because the
number of noise points was reduced, the chance of random
clusters similar to the template also decreased.

In the third test case, testing is done by generating the sky
without any constellation injection. The result is that almost all
constellations produce fewer matches compared to those using
injection. A small number of false positives also still appear
due to the coincidence of random point combinations that are

similar to the template. The presence of false positives in this
condition shows that although the normalized geometric
distance is good enough to filter shapes, there is still a risk of
shape similarity due to the limitations of the pairwise distance
feature representation alone. Noise-only testing is important to
assess the level of robustness of the algorithm against detection
errors.

The final test has quite significant results, namely a drastic
increase in the number of matches, both true positive and false
positive. Many clusters are formed larger which causes
combinatorial exploration within the cluster to increase rapidly.
Large error tolerance causes the system to be more permissive
in accepting shape similarities, thus detecting many candidates
that are actually noise. This is a natural trade-off of the brute
force method where the more permissive the tolerance
parameter, the faster the coverage increases, but false positives
swell.

Based on the test results above, the Brute Force Force
Geometric Pattern Matching algorithm that is implemented is
able to work well in finding the constellations that are
automatically injected, especially in the configuration of low to
medium to-medium tolerance parameter parameters. DBSCAN
pre-filtering techniques have proven to be effective in reducing
candidate search space, which significantly suppresses
computing overhead from Brute Force exploration.

In general, the time complexity of this algorithm is
determined by several factors, namely the total number of stars
in the sky, the number of clusters resulting from DBSCAN, the
size of each cluster, and the number of candidate combinations
evaluated in the matching process.

For DBSCAN, the time complexity is close to O(N log N)
for low-dimensional data because DBSCAN utilizes a tree
structure to find neighbors. After the clustering process, each
cluster containing at least k points (where k is the number of
stars in the constellation pattern being searched, for example 4
or 5) will test all combinations of its subsets. The combinatorial
complexity of this process is O(C(nc, k)) in each cluster, where
nc is the number of stars in the cluster. Given that C(nc, k) =
nc! / (k!(nc - k)!), this combinatorial complexity grows very
rapidly as the cluster grows, even when random sampling is
applied to limit the number of candidates. Next, each candidate
who passes the verification stage will undergo the process of
calculating the normalized distance matrix and root mean
square error, each of which requires O(k²) distance operations.
So the time complexity for this program is:

V. CONCLUSION

The problem of searching for constellations in a two-
dimensional sky map is a real example of a geometric pattern
matching problem, where geometric patterns must be
recognized from a set of randomly distributed points, with
uncertainties in scale, position, and orientation. This problem is
increasingly relevant as the volume of modern astronomical
observation data increases, thus demanding a reliable automatic
solution.

In this study, a brute-force geometric matching approach
has been implemented by utilizing the normalized pairwise

Pattern
Test Case (match)

1 2 3 4

Aries 20 3 2 5334

Taurus 20 10 0 12053

Gemini 51 16 8 14383

Cancer 9 1 0 10732

Leo 2 2 0 4201

Virgo 3 1 0 8041

Libra 3 5 0 1724

Scorpio 63 14 73 6344

Sagittarius 17 2 1 9522

Capricorn 12 2 0 9602

Aquarius 103 22 96 13206

Pisces 4 1 0 9593

Time Taken (s) 79.94 31.48 33.81 30.94

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

distance as a shape descriptor. To overcome the high
complexity of combination exploration, this algorithm is
combined with DBSCAN-based clustering that effectively
narrows the candidate space, and applies a random sampling
strategy to a subset of candidates in the cluster. Thus, although
the basic principle remains explorative (exhaustive search),
efficiency is maintained in medium-sized data scenarios.

The test results show that this algorithm successfully
detects constellation patterns that have been inserted into
synthetic sky maps. With the right tolerance and cluster radius
parameter settings, the system is able to produce fairly accurate
matching, although there are still false positives which are a
natural consequence of the brute force nature that does not rely
on probabilistic model learning. The time complexity of the
algorithm shows a significant increase in cases where the
number of stars per cluster is large or when the error tolerance
is relaxed, as shown in testing parameter variations.

VIDEO LINK AT YOUTUBE

https://youtu.be/VQr0EZB6s80

ACKNOWLEDGMENT

The author would like to express their gratitude to the
following individuals:

1. God Almighty for the blessings and grace that provided
the author strength in writing and completing this paper.

2. The author ’s parents for their support and
encouragement throughout the writing process.

3. Dr. Ir. Rinaldi Munir, M.T., Dr. Nur Ulfa Maulidevi, and
Mr. Monterico Adrian S.T., M.T., lecturers of the Algorithm
Strategies course in the even semester of 2024/2025, for
providing knowledge that proved to be essential in writing
this paper.

The author would also like to express their gratitude to all
references utilized in this paper and would like to apologize if
there are any errors present in this paper.

REFERENCES

1. R. L. Branham, "Automatic pattern recognition applied to star
configurations," Publications of the Astronomical Society of the
Pacific, vol. 106, no. 704, pp. 516–521, 1994.

2. Munir, Rinaldi. 2022. “Algoritma Brute Force (Bagian 1)”. https://
informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/02-
Algoritma-Brute-Force-(2025)-Bag1.pdf, accessed on June 23rd ,
2025.

3. Munir, Rinaldi. 2022. “Algoritma Brute Force (Bagian 2)”. https://
informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/03-
Algoritma-Brute-Force-(2025)-Bag2.pdf, accessed on June 23rd ,
2025.

4. International Astronomical Union (IAU), "The Constellations,".
Available: https://www.iau.org/public/themes/constellations/,
accessed on June 24th, 2025.

APPENDIX

The source code implemented in this paper can be found on
this GitHub repository: https://github.com/fithrarzk/
Constellation-Finder

DECLARATION
I hereby declare that this paper that I have written is my own
work, not an adaptation or translation of someone else’s paper,
and not a result of plagiarism.

Bandung, 24 Juni 2025

Muhammad Fithra Rizki 13523049

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2024/2025

https://youtu.be/VQr0EZB6s80
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/02-Algoritma-Brute-Force-(2025)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/02-Algoritma-Brute-Force-(2025)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/02-Algoritma-Brute-Force-(2025)-Bag1.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/03-Algoritma-Brute-Force-(2025)-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/03-Algoritma-Brute-Force-(2025)-Bag2.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2024-2025/03-Algoritma-Brute-Force-(2025)-Bag2.pdf
https://www.iau.org/public/themes/constellations/
https://github.com/fithrarzk/Constellation-Finder
https://github.com/fithrarzk/Constellation-Finder

	Introduction
	Basic Theory
	Brute Force
	Constellation System
	Geometric Pattern Matching
	Distance Metric, Normalization, and Clustering

	Implementation
	Datasets and Synthetic Data
	Constellation Pattern Representation
	Initial Clustering
	Candidate Combination Sampling
	Geometric Distance Normalization
	Pattern Matching with RMS Error and Pre-Filtering with Anchor
	Result Visualization

	Testing and Analysis
	Testing
	Normal Testing with No Change
	Generate 100 Stars
	Generate with no Injection
	Change BASE_TOLERANCE to 0.15 and EPS_CLUSTER to 30

	Analysis

	Conclusion
	Video Link at Youtube
	Acknowledgment
	References

	Appendix

